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Abstract 
 
As the number of seismic sensors grows, it is increasingly difficult to pick seismic phases manually 
and comprehensively, yet such efforts are fundamental to earthquake monitoring. Despite years of 
improvements in automatic phase picking, it has been difficult to match the performance of 
experienced analysts. Different seismic analysts also pick phases differently, which introduces bias 
into earthquake monitoring. Under this grant we developed a deep-neural-network-based arrival-
time picking method called “PhaseNet” that picks the arrival times of both P and S waves. 
PhaseNet uses either single-component or three-component seismic waveforms as input and 
generates continuous probability distributions of P arrivals, S arrivals and noise as output. We train 
PhaseNet such that peaks in the probability distributions provide accurate arrival times for both P 
and S waves. PhaseNet is trained on a waveform data set assembled from analyst-labelled P and S 
arrival times from the Northern California Earthquake Data Center. The data set includes over 
700,000 waveform samples from over three decades of earthquake recordings. PhaseNet achieves 
much better picking accuracy and recall than existing methods when applied to the waveforms of 
known earthquakes.  In subsequent studies using PhaseNet to pick arrival times in continuous data, 
we have realized its potential to increase dramatically the number of S-wave observations over 
what would otherwise be available. Our experiments indicate that with PhaseNet it is actually 
easier to pick S waves for small earthquakes than it is to pick P waves because the S waves have 
larger amplitude.  This new capability will enable both improved locations and improved shear 
wave velocity models. 
  



Introduction 
 

Deep neural networks learn the features from labelled data, both noise and signal, which proves 
a powerful advantage for complex seismic waveforms. Our PhaseNet network is trained on a 
catalog of available P and S arrival times picked by experienced analysts. Unfiltered three-
component seismic waveforms are the input to PhaseNet, which is trained to output three 
probability distributions: P wave, S wave and noise. Peaks in the P wave and S wave probability 
are designed to correspond to the predicted P and S arrival times. PhaseNet provides high accuracy 
and recall rate for both P and S picks, and achieves significant improvement compared with a 
traditional characteristic-function-based methods. PhaseNet has the potential to provide 
comprehensive, superior performance for standard earthquake monitoring.  
 
Data 
 

We gathered digital seismic waveform data based on the Northern California Earthquake Data 
Center Catalog (NCEDC 2014). We use three-component data that have both P and S arrival times. 
This yielded 779,514 recordings. We use stratified sampling based on stations to divide this data 
set into training, validation and test data sets, with 623,054, 77,866 and 78,592 samples, 
respectively. The training and validation sets are used during training, fine-tuning parameters and 
model selection. The test set is only used to evaluate the final performance. This data set has a 
diversity of waveform characteristics. It includes a variety of instruments in the Northern 
California Seismic Network and covers a wide range of signal-to- noise ratio (SNR). The 
complexity of this data set makes it challenging for automatic phase picking, but it is representative 
of the data available.  

We apply minimal data pre-processing to the data. We randomly select a 30-s time window 
that includes the P and S arrival times as the input of PhaseNet. The position of the arrivals within 
the window are varied to ensure that the algorithm does not just learn the windowing scheme or 
the positioning within it. All data are sampled at 100 Hz, which is the most common sampling rate 
in the raw data set, so that the 30-s input waveforms have 3001 data points for each component. 
We normalize each component waveform by removing its mean and dividing it by the standard 
deviation. There are errors in the data such that manually picked time points in the data set may 
not be the true P/S arrivals, but we expect the ground-truth arrival times will be centered on the 
manual picks. For this reason, we apply a mask with the shape of a Gaussian distribution around 
the manual picks. The time point picked by analysts is assigned the highest probability, while the 
nearby data points have reduced probabilities (Fig. 4d). The standard deviation of the Gaussian 
distribution is set to 0.1 s in each case. Representing manual picks probabilistically should allow 
the algorithm to reduce the influence of picking errors in the data set. Because we have considered 
the probabilities of the nearby data points, the mask increases the amount of information in P and 
S picks relative to noise and helps accelerate convergence. Here the noise includes all data points 
that are not first arrivals of P or S waves.  
 
Method 
 
The architecture of PhaseNet (Fig. 1) is modified from U-Net (Ronneberger et al. 2015) to deal 
with 1-D time-series data. U-net is a deep neural network approach used in biomedical image 
processing that seeks to localize properties in an image through an encoding-decoding structure. 



The mapping to our problem is to localize the properties of our time-series into three classes: P 
pick, S pick and noise. The inputs are three-component seismograms of known earthquakes. The 
outputs are probability distributions of P wave, S wave and noise. In our experiments, the input 
and output sequences contain 3001 data points for each component (30 s long, sampled at 100 
Hz).  
 

 
Fig. 1.  PhaseNet architecture. Input are 30-s three-component seismograms sampled at 100 Hz. 
Output is three probabilities with the same length as input for P, S, and noise. Blue rectangles 
represent layers inside the neural network. The numbers near them are the dimensions of each 
layer, which follow a format of “number of channels × length of each channel”. Arrows are 
operations applied between layers, as noted in the low right corner. Input seismic data go through 
four down-sampling stages and four up-sampling stages. The down-sampling is done by 1-D 
convolution and stride. We set the length of convolution kernel to seven data points and the stride 
step to four data points. Up-sampling is done by deconvolution, which recovers the input length 
of the previous stage. A skip connection at each stage concatenates the left output to the right layer 
without going through the deeper layers, which improves convergence during training. Blue 
rectangles with dashed boundaries are layers copied directly by the skip connection. The softmax 
normalized exponential function sets probabilities in the last layer.  
 
The input seismic data go through four down-sampling stages and four up-sampling stages. Inside 
each stage, we apply 1-D convolutions and rectified linear unit (ReLU) activations. The down-
sampling process is designed to extract and shrink the useful information from raw seismic data to 
a few neurons, so each neuron in the last layer makes up a broadly receptive window. The up-
sampling process expands and converts this information into probability distributions of P wave, 
S wave and noise for each time point. A skip connection at each depth directly concatenates the 
left output to the right layer without going through the deeper layer. This helps improve 
convergence during training (Ronneberger et al. 2015; Li et al. 2017). The 1-D convolution size 
is set to seven data points. The stride step for downsampling is set to four data points, so after each 
stride the channel length is condensed into one-fourth of its original dimension, while the 
deconvolution operation for up-sampling expands the condensed layers by a factor of four to 
recover its previous length. We have added padding at the front and the back of each layer during 



convolutions to make the input and output sequences have the same length. Fig. 1 shows the size 
of each layer and the operations of convolution and deconvolution. The softmax normalized 
exponential function is used to set probabilities in the last layer. 
 
Results 
 
We compare our results with those obtained by the open-source “AR picker” (Akazawa 2004) 
implemented in Obspy (Beyreuther et al. 2010). The results of both PhaseNet and AR picker are 
shown in Table 1. For our data set, our method achieved significant improvement, particularly for 
S waves. Because S waves emerge from the scattered waves of the P coda, picking S arrivals is 
usually more challenging for automatic methods.  Fig. 2 shows the distribution of time residuals 
between the automated and human-labelled P and S picks and Fig. 3 shows examples of picks. The 
residual distributions of the P picks are much narrower than for the S picks, which is consistent 
with the fact that P wave arrivals are expected to be clearer and hence easier to pick. The residual 
distributions of both P and S picks for PhaseNet are distinctly narrower and do not have obvious 
skew towards late estimates of AR picker.  
 

 
Fig. 2. The distribution of residuals of PhaseNet (upper panels) and AR picker (lower panels) on 
the test data set.  
 
 



 
 
Fig 3. Six examples of PhaseNet output for the test data set showing its ability to pick arrival 
times reliably. The upper panels (i–iii) are the East-North-Vertical components of seismograms. 
The lower panels (iv) are the predicted probability distributions of P wave (P) and S wave (S). 
Blue and red lines are the P and S arrival times picked by analysts from the NCEDC phase 
catalog.  
 



PhaseNet predicts the probability distributions of P and S picks for every data point in the time-
series, so it cacn be applied to continuous data for earthquake detection. Figure 4 shows semi-
synthetic continuous seismic data that we created by stacking waveforms of eight different events. 
These events are shifted to make the arrival-time interval between adjacent events equal to 6 s. We 
have applied both basic STA/LTA in Obspy and our PhaseNet method to this sequence. The short 
and long sliding windows of the STA/LTA method are set to 0.2 and 2 s, respectively. The output 
shows that PhaseNet produces similar spikes as STA/LTA methods; however, unlike these 
methods, PhaseNet also differentiates between P and S arrivals. This information can be used to 
reduce false detections and mis-associations.  
 

 
Fig. 4. Semi-synthetic continuous seismic waveforms. (a) Waveform of vertical component. (b) 
Output of basic STA/LTA in Obspy. (c) Output of PhaseNet. The continuous data are created by 
stacking waveforms of eight events. The first-arrival-time interval between adjacent events is 6 s. 
PhaseNet greatly outperforms STA/LTA in picking S waves and, unlike STA/LTA, actually 
discriminates between P and S picks. 
 
Conclusions 
Deep learning methods continue to rapidly. An important ingredient for improving them is the 
existence of large, labelled data sets. Seismology is fortunate to have such large data sets ready at 
hand in the form of decades of arrival times with accompanying waveforms. Under this grant we 
built a training data set using manually picked P and S arrival times from the Northern California 
Seismic Network catalog. Using that as input we developed PhaseNet, a deep neural network 
algorithm that uses three component waveform data to extract arrival times for P and  S waves. 
Our method achieves significant improvements compared with existing methods, particularly for 
S waves.  We have applied the PhaseNet method to earthquakes in California, Italy, China, 
Martinique, Mayotte, Kansas, and Oklahoma with great success.  It will form the basis for an 
enhanced northern California earthquake catalog in the near future.  The PhaseNet method was 
published [Zhu and Beroza, 2019] and the trained model is freely available on GitHub. 
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